FusionNet: 3D Object Classification Using Multiple Data Representations
نویسندگان
چکیده
High-quality 3D object recognition is an important component of many vision and robotics systems. We tackle the object recognition problem using two data representations, to achieve leading results on the Princeton ModelNet challenge. The two representations: • Volumetric representation: the 3D object is discretized spatially as binary voxels 1 if the voxel is occupied and 0 otherwise. • Pixel representation: the 3D object is represented as a set of projected 2D pixel images. Current leading submissions to the ModelNet Challenge use Convolutional Neural Networks (CNNs) on pixel representations. However, we diverge from this trend and additionally, use Volumetric CNNs to bridge the gap between the efficiency of the above two representations. We combine both representations and exploit them to learn new features, which yield a significantly better classifier than using either of the representations in isolation. To do this, we introduce new Volumetric CNN (V-CNN) architectures.
منابع مشابه
3D Scene and Object Classification Based on Information Complexity of Depth Data
In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملA novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملSurvey of Object Classification in 3D Range Scans
Modern 3D cameras allow for the acquisition of large 3D scenes containing objects of interest that can be detected and classified for scene understanding. This survey focuses on the task of object classification in urban range scans and indoor RGB-D images. Each approach will be compared based on several factors including classification accuracy, utilization of the 3D data, and performance on k...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1607.05695 شماره
صفحات -
تاریخ انتشار 2016